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In this paper we will consider “incomplete” polynomials of the form
P(z) = 2" + Qp312" "+ Qg 92" A+ g, o

where £ >0 and |ay| +1a;] + ** + | @p_p-1| 7% 0, and investigate the
number of zeros of P(z) falling within an angle whose vertex is at the origin
of the complex plane.

n — k zeros of such a polynomial can be found in every angle (even a ray)
whose vertex is at the point z = 0. In fact, let z, , 2 ,..., z,_; be positive
numbers, and let Q(z) be a polynomial of degree n — k — 1 which inter-
polates the function —z” at the points z; , 25 ..., Zpz :

0@z) = —z, s=12..n—Fk
Then z; , z5 ,..., Zy.;; are zeros of the polynomial

z" -+ Q(2),

which is of the form (1).
On the other hand, it is not hard to see that, in the case &k = 1, all zeros
of the polynomial (1) (in this case

P(z) = 2" + ap, 92" + - + ay)

cannot be situated on the same side of any straight line which passes through
z = 0, because the sum of the zeros of this polynomial is zero.
In the general case, k = 0, we have the following:

TueoREM. FEvery polynomial of the form

Pz) = 2" + Gy 312" Gy 02" A 0,
where
n—1=2k>=0, lao | +la ]+ +1dppa| #0

can have no more than n — k zeros falling within an angle U, less than
2m/(k + 1), whose vertex is at the origin of the complex plane.
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If U is equal to 2a/(k + 1), k > 1, this polynomial can have n — k + 1
zeros in this angle only when all these zeros are on the sides of the angle, and

P(z) = 2z + ay_py2" %, Opgpy 7 O.

As a direct corollary of this theorem, we have that for an angle U less
than 2#/(k — s5), where s = —1, 0, 1...., ¥ — 1, a polynomial of the form (1)
can have no more than # — & + s -+ 1 zeros within this angle.

By substituting z = 1/y, we can conclude similar results for incomplete
polynomials of the form

Gy" + @yt A gy L

In order to prove the theorem, it is enough fo consider the case where U
is of the following form:

U:0 argz < @, ¢ < 2l + 1. )

The general case is then obtained by rotation of the coordinate system
about the origin.
To facilitate proof of the theorem, we will derive first some lemmas.

Lemma 1. Let [z, 25 .o, Zn144]" denote the sum

i1,08 ... in—kt1 {
22 Zphi1® 3
PRT R -

If 21, 2y yo., Zn_peq Qre the zeros of @ polynomial of the form (1) then
[Zl 5 22 geees Zn——lc+1]k = O‘

Proof. Since z; for i =1, 2,....,n — k + 1 are zeros of the polynomial
of form (1) then the polynomial

P4 (2) = QpogpaZ" N @y 02" 4 g

interpolates the function —z" at the points z; and according to Newton’s
formula [1]:

P,y 3(2) = ¢y 4z — z) + oz — z)(z — z) +
+ otz — 2}z — 25) = (2~ Zp i) 4
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It is known [1] that
¢ =[z3,25 5000 Zia "
and thus from (4) we get
Cnte == [21 5 23 5eees Zn——k‘+1]7c = 0. (5)

[Equation (5) is a sufficient condition for z,, Z, ,..., Z,_z4; t0 be zeros of
some polynomial of form (1).]

This lemma is a special case of the more general result due to E. Kiryatski
[2]. From Lemma 1, as in [3], we can see that in the angle 0 < argz <«/k
the polynomial (1) can not have more than n — k zeros. In fact, in this
case, each term in the sum (3) has a positive imaginary part.

2

LemMA 2. Let U be the smallest angle, whose vertex is at the origin of
the complex plane, which contains all the points y, , Vs 5..., Yn ,» Where y; % 0
fori=1,2,..,N; N >2and

[¥1, Y2 5 y]* = 0. (6)

Then in this angle U, there are the points y,', Y5 s, V53 ¥ %0, i =1,2,.., 5;
N =5 =1, such that

[yl’a y2l>'-': ysl]k =0 (7)

and all of these points are situated on two rays coming out of the origin.

Proof. Let U be the smallest angle whose vertex is on the origin of the
complex plane, which contains all the points v, , Vs ,..., ¥ . Let ¢ of these
points be within U (not on the sides). If ¢ = 0 the lemma is true. Let us
assume that for ¢ <C p the lemma is also true. Now let ¢ = p -+ 1 and the
point y; is within U. Then only p of the points y;, ys ,..., yv fall within U.

Now let us examine the equation L(¢, z) = 0, where

L(ta Z) = [Za Yo Vs, Waseess tyN]k*

With respect to z, L(¢, z) is a polynomial of degree k, whose first coefficient
equals one. As a result of (6), one of the zeros of this polynomial, say
zy = zy(t), has the value y; when ¢ = 1. It is also known that the function
zy = z,(t) is a continuous function of ¢ if 0 < ¢ <{ 1. Then either the curve
z; = z,(¢) will cut one of the sides of the angle U, when 1 = fyand 0 << ¢, < 1
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or the point z; = 2,(0) will remain within the angle U. In the first case,
Eq. (7) holds for the points:

’

.]’711 = Zl(tl)): Yo = Va» ym/ = foJ’m s m = 35 47"'> N.

It is clear that when 7, > 0 and for the fixed m = 3, 4,..., N, the points y,,
and y,’ are situated on the same ray coming out of the origin, therefore
these points are either both on the sides of the angle U, or both within /.
That is, as before, only p of the points yy', y5',..., ¥y are situated within the
angle U. Furthermore, y;” is situated on a side of the angle U, therefore
only p out of the points y;/, ¥5,..., y»’ are situated within the angle U and
the proof is established by induction.
In the second case,

L(Os Z(O)) = [21(0)7 Ve, 0, 0,.... O]k = (.

Then the Eq. {7) holds for y,' = z,(0) and y," = y, which are inside U and
the lemma is proved in the second case also.

Remark. It is possible to make Lemma 2 more exact. If at least one of
the points v, , ¥s,..., yn is situated within the angle U then all of the points
¥1's Yo 5., ¥ s defined above, can be considered to be situated within the
angle U. In fact, let us assume that y, is situated within the angle U. Let us
investigate the equation

[z, ¥y €xp(ixot), y5 €Xp(ixXsl),..., yn explixyt)}¥ = 0,

where x,, = 0 if the point p,, is found within the angle U; x,, = 1 if v, is
sitnated on the side arg z = 0; and x,, = —1if y,, is on the side argz = ¢
of the angle U. One of the roots of this equation, say z, = z,(¢), takes on the
value y,, when ¢ = 0, and is also continuous function of ¢. Therefore the
number f; > 0 can be taken small enough such that all of the points
¥1 = z,{80), Vo, = Vm €x0(ixty), m =2, 3,..., N will fall within the angle U.
Now it is sufficient to apply Lemma 2 for the points y), .

3

Let 5 points be situated on two rays which come out of the origin of the
complex plane. Let us denote the points on one of the rays by a; = g; exp(ia),
j=12,..5 and on the other by &; = r;exp(i(a + ¢}), j=1,2,..., 5.
Here s; -+ s, = 5 and g;, r; are absolute values of the complex nuwmbers
a; and &;. Then the homogeneous expression (3) of power & from the

640(12[4-4
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complex numbers dy, dy,..., ds 5 by, by,..., b, can be written in the
form
8
[(11 » Ao yeees gy 5 b1 ’ bz 9eey bsz]k = etke z Cmelmw’ (8)
m=0}
where
Cm = AmBk—m 5

Ay = [(h > Qg seees q.s‘llms B, = [rl s 1o 5eees 7'32]"”, m >0

and

We now prove the following lemma for the quantities 4,, .

LemMA 3. If ¢1, 45 ..., s, are positive numbers, then for each integral m,

R, = (Am)2 - Am~1Am+1 >0

when s; > 1, and
R,=0

when s; = 1.

Proof. When s; = 1, 4,, = g,", and therefore

m-1_m+1

R, = ¢i" — g7 'q; 0.
Now let us assume that lemma is proved for s; = p and for each integral m,
R, = (Am)z — Ap1Amyy =0 ®

and designate
Ew=1a1,9 5 90,9

where g > 0.
It is easy to see that
Ep = Enaq + An, (10)
therefore
Ep = Ap + qAna + o 4 g4y + g™ (11)

From (9) we get the following inequalities:

Dm,i = AmAm—i+1 - Am+1Am_i = 0, i= 1, 2,..., m,
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in fact

Dm,i = AmAm—'-Z (Am‘_i_k_l - Aj‘;_rb+1)
— Amiv1  Amins | Am_ss . A Ay Ay
== AmAm——'z ( Am~i Am~i+1 + Am~i+1 Am—]_ + A‘m-”l Am }

B Ron_iia Ry i e

= Ayl (Am—z‘Am—i+1 + Am—iv1Am—ive v
-Rm——l | Ry,

Am——ZA‘m—l v Am“lAm

_}_

)>0.

Then from (10) and (11)
(B — EppaBmy = (Ap + Enaq) En — Ay + Eng) Epy
= ApE, — Apiion
= Ap(Ap + Ap3q + - + 4 g™ + ¢ —
— Apia(Amq + Apgqg + 0 + Aig™ 2 + g™ )
= Dy + Dunog + ** + Dymg™ ™ + Aug™ > 0,

thus the lemma is proved.
A similar inequality holds for B, :

R, = (B, — ByBn>0 (12)

when s, > I, and R, = 0 when s, = 1.
LemmA 4. Let us define sy, sy, q;, ¥;, and C, as above. Now if
53 =8y = 1 and v, = ¢y, then all the C,, are equal. In all other cases there

exists a number p, 0<p <k such that C, < < <C, and
Cpi > Cppe > > G

Proof. Let us investigate the difference

Bivs  An
Cs — Cp = ApisBimes — AnBim = AmiaBrm (fB’fk——l — ).

As a result of (12), when m increases, the ratio B,_,_,/B,_,, decreases if
s, > 1, because

m+1

7
Bkwm——2 _ Bk-m—l _ Rk~m¢1

= < 0.
B k—m—1 B k—m B k—m—lB k—m

The ratio —A4,,/A ., also decreases with increasing m if 5; > 1, since

— Am+1 + Am — Rm+1
Am+2 Am+1 Am+2Am+1

< 0.
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Therefore if at least one of the numbers s, or s, is greater than one, then

[(Bi—m—1/Bi—m) — (Am/Am1)] decreases with increasing m. As a result of

this, C,,; — C,, can change sign no more than once, i.c., there exist p,

0<p<ksuchthat C; < Cy, < < Cyrand Cppy > Cpp > - > Cy.
If s; = s, = 1 then

k—m~—1 m
M1, — F q1 mA1 T 1 1
Cm+1‘Cm-_—'Q1+”1m( :,]]f:—m - q{n+1):‘h+"1m(—‘r1 —“—‘ql)-

From the last equation, we can easily see that if r; > ¢, (r; < ¢,) the function
C,, decreases (increases) with increasing m. Therefore there exists p (p =0
or k) as is stated in the lemma. If r, = ¢, then C; =C, = - = (.

4

LeMMA 5. Let ay, ay ..., a; be real positive numbers and there exist an p,
0 < p < k, such that

G <o <K, (13)
and
Apiy 2 Gyrg 2 °°° Z Ay (14)
Then for the polynomial
0@) = az* + apz"t + - + 4y (15)

there are no zeros on the arc
lz| =1, —2x/(k + 1) < argz < 27/(k + 1). (16)

The polynomial Q(z) has zeros at z = exp(+2wil(k + 1)) only when

Ay =— Q) = =" = 4ay .

Proof. 1t is sufficient to prove that when there are at least two unequal
numbers among the numbers g; , then the polynomial Q(z) has no zeros on
the arc

lz| =1, —2mjtk + 1) < argz < 2wk 4 D).

In this case we can assume that in at least one of the collections of numbers
(13) or (14) there are at least two different numbers.

In fact, let us assume that g, =a; = - =g, =a and @, ; = a,,, =
-+ = g, = b, where b 5= g. Without loss of generality take b > a. Then it
is possible to transfer a,,,, from (14) to (13) without changing the conditions
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of the lemma. Thus in (13) not all numbers are equal. Therefore for purposes
of the proof we will assume that in the collection (13) not all of the numbers
are equal, that is

a, < a,. a7

All of the coefficients of the polynomial (15) are real, therefore it is suffi-
cient o investigate the arc

lz] =1, 0 <argz < 27/(k + 1).

It is clear that z = [ is not a zero of (15). We now look at z = exp(ip)
where
0 <o <2k +1) (18}

and define the following vectors in the complex plane

As = a; explisp), s =10,1,., k.

Let us assume that », and u, are the angles between 4, and 4,, and
between A4,,.; and A;, respectively, and assume that 5, and b, are the
bisectors of u; and u, ,

birargz = pol2;  byargz = ((p+ 1) +k)gp/2

As a result of (18), the angle (counterclockwise) between &, and b, is not
greater than « (and is equal to 7 only if @ = 2#/(k -+ 1)).

Therefore, the bisector », and the vectors 4, and 4,., are on the same
side of the line Z which passes through the bisector b, .

It is easy to see that at least one of the angles u, and u, , say u; is smaller
than w. As a result of (13) and (17) the vectors 4y + A4,, Ay + Asy,
Ay + A, 5 ,... all fall in the angle y between b, and A4,, and the first of
them falls inside y.

Therefore the vector

S1:A0+A1+"'+Ap

is not equal to zero (since y < ) and falls within . From (14) we get that the
vector
Sy = Ap+1 + Am—z + o+ Ay

is situated on the same side of the line L (which passes through the bisector
b,) as the vector 4,,, . S, can be also on the line L.

As a result of this we conclude that the vectors S; and §, are on the same
side of the line L, and only the vector S, may be situated on this line. There-
fore Sy + S, = 0 if z is on the arc (18).



360 L. FRIEDLAND
5

Proof of the Theorem. The theorem is clearly true for k = 0, and at the
beginning of this paper we showed that it holds for k = 1. Let us assume
that the zeros of the polynomial P(2): z; , Zy ,..., Zu_pyq fall within the angle
UU:0 <argz < 2w/(k - 1)) and of them z,z,,..., 2, are not zero.
p = 2 since

lagl +1a ]+ + [ appul 0.

From Lemma 1
(215 Z9 yees Zu—psal® = (21, Zg yeees Zp)* = O. (19)

Clearly (19) does not hold if all of z;, i = 1, 2,..., p are on the same ray
coming out of the origin. Therefore there are two possibilities

(a) Atleastone of z;,i =1, 2,..., p, e.g., z, is situated within U.
(b) Allofthez;,i=1,2,.., p are situated on the sides of the angle U.

In the first case, as a result of the Remark to Lemma 2 there are always
points 1, Vg 5o, ¥s, 1 << s < p sitvated on two rays I, and L, which
originate at the origin of the complex plane and fall within U and

[yl > y2 EAAAE ] J’s]k = 0 (191)

As in the beginning of the part III we can write the last equation as

k
Y Cpzm =0, (20)

m=0

where z = exp(ip) and 0 << ¢ << 27w/(k -+ 1) being the angle between the
rays L, and L, .

From Lemma 3 it turns out that for the coefficients C,, of the polynomial
(20), Lemma 4 holds. But ¢ < 2#/(k + 1) and therefore according to
Lemma 5, Eq. (20) can not hold.

In the second case all the points are situated on the rays arg z = 0 and
arg z = 2n/(k + 1), therefore it is possible to write the Eq. (19) in form (20)
where as in the first case for C,, Lemma 4 holds and z = exp(ip)
(¢ = 2w/(k + 1)). From Lemma 5 in this case we conclude that equation (20)
holds only if Cy = C; = - = C;, and this exists only if p =2, z, = r and
zy = r expQn/(k + 1)). Then

P(z) = zn (¥ - q),  a 0.

This completes the proof of the theorem.
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