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In this paper we will consider "incomplete" polynomials of the form

P(z) = zn + an_k_lzn-k-l + an_k_2zn-k-2 + ... + ao, (1)

where k > °and Iao I + Ial I + ... + I an-k-l I =I 0, and investigate the
number of zeros of P(z) falling within an angle whose vertex is at the origin
of the complex plane.

n - k zeros of such a polynomial can be found in every angle (even a ray)
whose vertex is at the point z = 0. In fact, let Zl , Z2 , ..., Zn-k be positive
numbers, and let Q(z) be a polynomial of degree n - k - 1 which inter­
polates the function _zn at the points Zl , Z2 , ..., Zn-k :

s = 1, 2, ... , n - k.

Then Zl , Z2 ,..., Zn_k are zeros of the polynomial

Zn + Q(z),

which is of the form (1).
On the other hand, it is not hard to see that, in the case k = 1, all zeros

of the polynomial (1) (in this case

P(z) = zn + an_2zn-2 + ... + ao)

cannot be situated on the same side of any straight line which passes through
z = 0, because the sum of the zeros of this polynomial is zero.

In the general case, k ;;;:: 0, we have the following:

THEOREM. Every polynomial of the form

P(z) = zn + an_k_lzn-k-l + an_k_2zn-k-2 + ... + ao,

where
n - 1 ;;;:: k ;;;:: 0, Iao I + I al I + ... + I an-k-l I oF °

can have no more than n - k zeros falling within an angle U, less than
27TJ(k + 1), whose vertex is at the origin of the complex plane.
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If U is equal to 21T/(k + 1), k > 1, this polynomial can have n - k 1
zeros in this angle only when all these zeros are on the sides of the angle, and

P(Z) = zn + a zn-k-ln-k-l ,

As a direct corollary of this theorem, we have that for an angle U less
than 21T/(k - s), where s = -1,0,1,... , k - 1, a polynomial of the form (1)
can have no more than n - k + s + 1 zeros within this angle.

By substituting z = l(y, we can conclude similar results for incomplete
polynomials of the form

1

In order to prove the theorem, it is enough to consider the case where U
is of the following form:

U: 0:::;; argz :::;; gJ, gJ :::;; 21T((k + 1). (2)

The general case is then obtained by rotation of the coordinate system
about the origin.

To facilitate proof of the theorem, we will derive first some lemmas.

LEMMA 1. Let [Zl' Z2 ,..., Zn_k+1]k denote the sum

(3)

IfZl , Z2 ,... , Zn-k+1 are the zeros ofa polynomial of the form (1) then

Proof Since Zi for i = 1, 2,..., n - k + 1 are zeros of the polynomial
ofform (1) then the polynomial

interpolates the function -zn at the points Zi and according to Newton's
formula [1]:

Pn-k-I(Z) = Co + c1(z - Zl) + c2(z - Zl)(Z - Z2) + ...
+ Cn_k(Z - Zl)(Z - Z2) ... (z - Zn-k)' (4)
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It is known [1] that

and thus from (4) we get

L. FRIEDLAND

(5)

[Equation (5) is a sufficient condition for Zl , Z2 , ..• , zn-k+1 to be zeros of
some polynomial of form (1).]

This lemma is a special case of the more general result due to E. Kiryatski
[2]. From Lemma 1, as in [3], we can see that in the angle °:(; arg Z < 7Tjk
the polynomial (1) can not have more than n - k zeros. In fact, in this
case, each term in the sum (3) has a positive imaginary part.

2

LEMMA 2. Let U be the smallest angle, whose vertex is at the origin of
the complex plane, which contains all the points Yl , Y2 ,..., YN, where Yi =1= °
for i = 1, 2, ... , N; N ?o 2 and

(6)

Then in this angle U, there are the points Yl', Y2', ... , Ys'; Y/ =1= 0, i = 1, 2, ... , s;
N ?o s ?o 1, such that

(7)

and all of these points are situated on two rays coming out of the origin.

Proof Let U be the smallest angle whose vertex is on the origin of the
complex plane, which contains all the points Y1 , Y2 , ... , YN' Let q of these
points be within U (not on the sides). If q = °the lemma is true. Let us
assume that for q :(; p the lemma is also true. Now let q = p + I and the
point Yl is within U. Then only p of the points Y2 , Y3 '00" YN fall within U.

Now let us examine the equation L(t, z) = 0, where

With respect to z, L(t, z) is a polynomial of degree k, whose first coefficient
equals one. As a result of (6), one of the zeros of this polynomial, say
Zl = Zl(t), has the value Yl when t = 1. It is also known that the function
Zl = Zl(t) is a continuous function of t if °:(; t :(; 1. Then either the curve
Zl = Zl(t) will cut one ofthe sides of the angle U, when t = to and°< to < I
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or the point Zl = Zl(O) will remain within the angle U. In the first case,
Eq. (7) holds for the points:

Ym' = toYm, m = 3, 4, ... ,N.

It is clear that when to > °and for the fixed m = 3, 4, ... , N, the points Ym
and Yw.' are situated on the same ray coming out of the origin, therefore
these points are either both on the sides of the angle U, or both within U.
That is, as before, only p of the points Y2', Ys',oo., YN' are situated within the
angle U. Furthermore, Y1' is situated on a side of the angle U, therefore
only p out of the points Y1" Y2', ... , YN' are situated within the angle U and
the proof is established by induction.

In the second case,

L(O, z(O)) = [Zl(O), Y2 , 0, 0, ... , O]k = o.

Then the Eq. (7) holds for Y1' = Zl(O) and Y2' = Y2 which are inside U and
the lemma is proved in the second case also.

Remark. It is possible to make Lemma 2 more exact. If at least one of
the points Y1 ,Y2 ,..., YN is situated within the angle U then aU of the points
YI', Y2', ... , ys' as defined above, can be considered to be situated within the
angle U. In fact, let us assume that YI is situated within the angle U. Let us
investigate the equation

where Xm = 0 if the point Ym is found within the angle U; Xm = 1 if Ym is
situated on the side arg z = 0; and Xm = -1 if Ym is on the side arg z = rp
of the angle U. One of the roots of this equation, say Zl = Zl(t), takes on the
value YI , when t = 0, and is also continuous function of t. Therefore the
number to > 0 can be taken small enough such that an of the points
y~ = Zl(tO)' Y;;' = Ym exp(ixmto), m = 2, 3, ... , N will fall within the angle U.
Now it is sufficient to apply Lemma 2 for the points Y;;' .

3

Let s points be situated on two rays which come out of the origin of the
complex plane. Let us denote the points on one of the rays byaj = qj exp(iOl),
j = 1,2,... , Sl and on the other by bj = rj exp(i(Ol + rp)), j = 1,2,..., S2 •

Here Sl + S2 = sand qj, rj are absolute values of the complex numbers
aj and bj • Then the homogeneous expression (3) of power k from the
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complex numbers al, a2 ,... , as ; bl , b2 ,... , b. can be written in the
1 2

form
s

[al , a2 , ••• , as, ; bl , b2 ,... , bS2]k = eikCi L Cmeim""
m~O

where

(8)

m >0

and

We now prove the following lemma forthe quantities Am .

LEMMA 3. If ql, q2 ,..., qs are positive numbers, then for each integral m,
1

when Sl > 1, and

when Sl = 1.

Proof When Sl = 1, Am = qlm, and therefore

Now let us assume that lemma is proved for Sl = P and for each integral m,

and designate

where q > O.
It is easy to see that

therefore

From (9) we get the following inequalities:

(9)

(10)

(11)

i = 1,2,... , m,
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in fact

D A A (Am-HI _ Am+I)
m,i = m m-i Am- i Am
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Then from (10) and (11)

(Em? - Em+IEm-I = (Am + Em-Iq) Em - (Am+I + Emq) Em- I

= AmEm - Am+lEm- I
= Am(Am + Am_Iq + ... + AIqm-I + qm) -

- Am+l(Am- I + Am-2q + '" + AIqm-2 + qm-l)

= Dm,I + Dm,2q + ... + Dm,mqm-l + Amqm > 0,

thus the lemma is proved.
A similar inequality holds for Bm :

Rm' = (Bm)2 - Bm+lBm- I > 0

when S2 > 1, and Rm' = 0 when S2 = 1.

(12)

LEMMA 4. Let us define SI' S2, qj, rj, and Cm as above. Now if
SI = S2 = 1 and r1 = qI, then all the Cm are equal. In all other cases there
exists a number p, 0 < p < k such that Co < CI < ... < Cp and
CP+I > Cp +2 > ... > Ck •

Proof Let us investigate the difference

Cm+1 - Cm = Am+lBk-m- I - AmBk_m = Am+IBk-m (B;-m-l - AAm ).
k-m m+l

As a result of (12), when m increases, the ratio B,,-m-I/Bk- m decreases if
S2 > 1, because

R~-m-I 0
B B

<.
k-m-I k-m

The ratio -Am/Am+I also decreases with increasing m if SI > 1, since

Rm +1 0
A A <.

m+2 m+l
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Therefore if at least one of the numbers SI or S2 is greater than one, then
[(Bk-m-l/Bk-m) - (Am/Am+l)] decreases with increasing m. As a result of
this, Cm+l - Cm can change sign no more than once, i.e., there exist p,
o :0:;;; p :0:;;; k such that C1 < C2 < ." < Cp and CV+l > CP+2 > ... > Ck .

If SI = S2 = 1 then

k-m-l mil
C _ C - m+lrk-m (r1 -~) _ m+lrk-m (- --)m+1 m - ql 1 rk-m qm+I - ql 1 r q'

1 1 1 1

From the last equation, we can easily see that if r1 > ql (r1 < ql) the function
Cm decreases (increases) with increasing m. Therefore there exists p (p = 0
or k) as is stated in the lemma. If r1 = ql then C1 = C2 = ." = Ck •

4

LEMMA 5. Let ao , a1 ,... , ak be real positive numbers and there exist an p,
o :0:;;; p :(: k, such that

(13)

and

Then for the polynomial

Q(z) = akzk + ak_lzk-1 + .,. + ao

there are no zeros on the arc

(14)

(15)

I z 1= 1, -27T/(k + 1) < arg z < 27T/(k + 1). (16)

The polynomial Q(z) has zeros at z = exp(±27Ti/(k + 1)) only when
ao = a1 = ... = ak .

Proof It is sufficient to prove that when there are at least two unequal
numbers among the numbers ai' then the polynomial Q(z) has no zeros on
the arc

I z 1= 1, -27T/(k + 1) ~ arg z :(: 27T/(k + 1).

In this case we can assume that in at least one of the collections of numbers
(13) or (14) there are at least two different numbers.

In fact, let us assume that ao = a1 = '" = av = a and ap+l = a'P+2 =
... = ak = b, where b =1= a. Without loss of generality take b > a. Then it
is possible to transfer ap +1 from (14) to (13) without changing the conditions
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of the lemma. Thus in (13) not all numbers are equal. Therefore for purposes
of the proof we will assume that in the collection (13) not all of the numbers
are equal, that is

(17)

All of the coefficients of the polynomial (15) are real, therefore it is suffi­
cient to investigate the arc

Iz I = I, o ~ arg z ~ 2Trj(k + 1).

It is clear that z = 1 is not a zero of (15). We now look at z = exp(ig»
where

o ~ g> ~ 2Trj(k + 1)

and define the following vectors in the complex plane

(18)

As = as exp(isg», s = 0,1, ... , k.

Let us assume that UI and U2 are the angles between Ao and A p , and
between Ap+l and A k , respectively, and assume that bi and b2 are the
bisectors of UI and U2 ,

b2 : arg z = ((p + 1) + k)g>j2.

As a result of (18), the angle (counterclockwise) between hi and b2 is not
greater than Tr (and is equal to Tr only if g> = 2Tr/(k + I)).

Therefore, the bisector bi and the vectors A p and A p +1 are on the same
side of the line L which passes through the bisector b2 •

It is easy to see that at least one of the angles Ul and U2, say Ul is smaller
than Tr. As a result of (13) and (17) the vectors Ao + A p , Al + A'J-l ,
A2 + A p _ 2 , ••• all fall in the angle y between b1 and A p , and the first of
them falls inside y.

Therefore the vector

81 = Ao + Al + '" + A p

is not equal to zero (since y ~ Tr) and falls within y. From (14) we get that the
vector

8 2 = Ap+l + A p+2 + ... + A k

is situated on the same side of the line L (which passes through the bisector
b2) as the vector Ap+l . 82 can be also on the line L.

As a result of this we conclude that the vectors 81 and 82 are on the same
side of the line L, and only the vector 8 2 may be situated on this line. There­
fore 81 + 8 2 01= 0 if z is on the arc (18).
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5

Proof of the Theorem. The theorem is clearly true for k = 0, and at the
beginning of this paper we showed that it holds for k = 1. Let us assume
that the zeros of the polynomial P(z): Z1 , Z2 , ... , Zn-k+l fall within the angle
U(U: 0 :s;; arg Z :s;; 27Tj(k + 1)) and of them Z1' Z2 , ... , Z1) are not zero.
p ~ 2 since

I ao I + I a1 I + ... + I an-k+l I =Fe O.

From Lemma 1

(19)

Clearly (19) does not hold if all of Zi' i = 1, 2,... , p are on the same ray
coming out of the origin. Therefore there are two possibilities

(a) At least one of Zi , i = 1, 2,... , p, e.g., Z1 is situated within U.

(b) All of the Zi , i = 1, 2,..., p are situated on the sides of the angle U.

In the first case, as a result of the Remark to Lemma 2 there are always
points Y1' Y2 ,... , Ys, 1 :s;; s :s;; p situated on two rays L1 and L 2 which
originate at the origin of the complex plane and fall within U and

[Y1' Y2 , ... , Ys]k = O.

As in the beginning of the part III we can write the last equation as

(19')

(20)

where Z = exp(i<p) and 0 :s;; <p < 21Tj(k + 1) being the angle between the
rays L 1 and L2 •

From Lemma 3 it turns out that for the coefficients Cm of the polynomial
(20), Lemma 4 holds. But <p < 21Tj(k + 1) and therefore according to
Lemma 5, Eq. (20) can not hold.

In the second case all the points are situated on the rays arg Z = 0 and
arg Z = 21Tj(k + 1), therefore it is possible to write the Eq. (19') in form (20)
where as in the first case for Cm Lemma 4 holds and Z = exp(i<p)
(<p = 21Tj(k + 1)). From Lemma 5 in this case we conclude that equation (20)
holds only if Co = C1 = ... = Ck and this exists only if p = 2, Z1 = rand
Z2 = r exp(21Tj(k + 1)). Then

P(Z) = zn-k-1(zk+1 + a),

This completes the proof of the theorem.

a =Fe O.
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